CONHECIMENTOS ESPECIALIZADOS

- **31)** Moldagem "é a operação de dar a forma desejada à pasta de cerâmica". Associe as duas colunas relacionando o tipo de processo à sua definição correta.
 - (1) a seco ou semisseco
 - (2) com pasta plástica consistente
 - (3) com pasta plástica mole
 - (4) com pasta fluida

- () denominada barbotina, é o processo de moldar a cerâmica dissolvida em água e solução, que é vertida em moldes porosos de gesso.
- () é o processo de extrusão, que consiste em forçar a pasta a passar sob pressão em um bocal apropriado moldando a peça cerâmica.
- () é a moldagem via moldes de madeira ou no torno de oleiro.
- () é a moldagem por prensagem.

A sequência está correta em

- a) 3 4 2 1
- b) 2 1 4 3
- c) 1 4 3 2
- d) 4 2 3 1

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA D)

De acordo com Falcão Bauer (V. 2, pp.533-534, 1994) itens 18.3.4.

Fonte: BAUER, L. A. Falcão. Materiais de Construção. 5. ed. Rio de Janeiro: LTC, 2004 e 1994, v. 1 e 2.

- **32)** Uma amostra de 2000g de solo úmido foi compactado num molde de volume de 1000cm³. Quando seco em estufa, esse solo apresentou um peso de 1800g. Sabendo-se que o peso específico dos grãos (partículas) é de 2,60 g/cm³, analise as afirmativas a seguir:
 - I. A porosidade desse solo é de 30,77%.
 - II. O volume de vazios é de 300cm³.
 - III. A taxa de umidade do sol é de 11,11%.
 - IV. O índice de vazios é igual a 0,39.

Estão corretas as afirmativas

- a) I, II, III e IV.
- b) I e III, apenas.
- c) II e IV, apenas.
- d) I, II e IV, apenas.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA B)

Dados: $\gamma_s = 2,60 \text{g/cm}^3$, P = 2000g, P_s =1800g e V = 1000cm³

$$\underline{\text{Umidade}}\left(\mathbf{w} = \frac{\mathsf{P}_{\mathsf{H}_2\mathsf{O}}}{\mathsf{P}_{\mathsf{S}}}.100\right)$$

$$P_{H_2O} = P - P_S = 2000 - 1800 = 200g$$

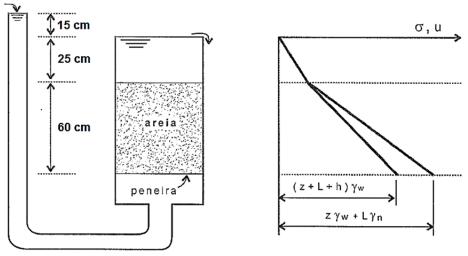
$$w = \frac{P_{H_2O}}{P_e} . 100 = \frac{200}{1800} . 100 = 11,11\%$$

Volume de Vazios $(V_v = V - V_s)$

$$V_S = \frac{P_S}{Y_S} = \frac{1800}{2.6} = 692.31 \text{ cm}^3$$

$$V_V = V - V_S = 1000 - 692,31 = 307,69 cm^3$$

Porosidade $\left(\eta = \frac{V_V}{V} \ . \ 100 \right)$


$$\eta = \frac{V_V}{V} \cdot 100 = \frac{307,69}{100} = 30,77\%$$

$$\text{Indice de vazios} \left(e = \frac{V_V}{V_S} \right)$$

$$e = \frac{V_V}{V_S} = \frac{307,69}{692,31} = 0,44$$

Fonte: PINTO, Carlos de Souza. Curso Básico de Mecânica dos Solos. 3. ed. São Paulo: Oficina de Textos, 2006.

33) Seja o sistema mostrado na figura abaixo, em que a areia tem peso específico de 18kN/m³ e a área do permeâmetro é de 600cm³.

Tensões no solo num permeâmetro com fluxo ascendente

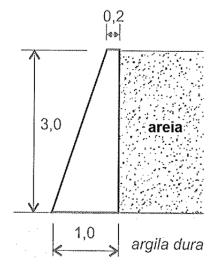
O esforço que a areia está exercendo sobre a peneira é de, aproximadamente:

- a) 1,0kN
- b) 2,0kN
- c) 10,0kN
- d) 20,0kN

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA B)

A tensão total na peneira é: σ = 10 • 0,25 + 18 • 0,6 = 13,3 kN/m².

A pressão neutra na cota correspondente à peneira é: u = 10 ·(0,15 + 0,25 + ,60) = 10 kN/m².


A tensão efetiva na interface da areia para a peneira é: $\sigma'=13,3-10=3,30 \text{ kN/m}^2$.

A força exercida pela areia na tela da peneira é:

$$F = 3.3 \frac{kN}{m^2} \,.\, 0.6 m^2 = 1.98 kN \approx \, \text{2kN}$$

Fonte: PINTO, Carlos de Souza. Curso Básico de Mecânica dos Solos. 3. ed. São Paulo: Oficina de Textos, 2006.

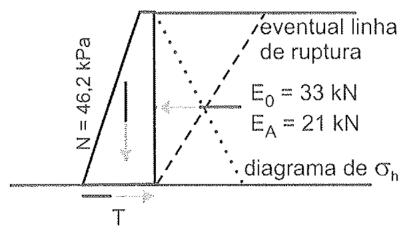
34) Considere o muro de arrimo mostrado na figura abaixo, em que a areia tem ângulo de atrito interno de 36° (Sen 36° = 0,59).

Admitindo-se que na areia o plano principal maior seja sempre o plano horizontal, o empuxo que a areia exerce sobre o muro, na situação de repouso, é de:

- a) 10kN
- b) 23kN
- c) 30kN
- d) 33kN

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA D)

<u>Solução</u>: Estuda-se estabilidade do muro, considerando-se o equilíbrio das forças em sua seção do muro com 1,0m de comprimento. No estado em repouso, a areia deve apresentar um coeficiente de empuxo em repouso, K_0 , que pode ser estimado pela equação de *Jaky*:


$$K_0 = 1 - \text{sen } \phi' = 1 - \text{sen } 36^\circ = 1 - 0.59 = 0.41.$$

Num elemento na areia, junto à base do muro, a tensão vertical, devido ao peso próprio, é de:

$$\sigma_{v} = y \cdot z = 18 \times 3 = 54 \text{ kPa}.$$

A tensão horizontal vale σ_b = κ_o^- . σ_r^- = 0,41 x 54 = 22 kPa.

O diagrama de empuxo é triangular, como se mostra na figura.

Pois a tensão cresce proporcionalmente à profundidade. O empuxo total é de:

$$E_0 = K_0 \cdot y \cdot z^2/2 = 33kN.$$

Fonte: PINTO, Carlos de Souza. Curso Básico de Mecânica dos Solos. 3. ed. São Paulo: Oficina de Textos, 2006.

- **35)** Segundo a definição do Falcão Bauer: "são considerados como defeitos nas madeiras todas as anomalias em sua integridade e constituição que alteram seu desempenho e suas propriedades físico-mecânicas". A definição exata da terminologia e padronização dos defeitos é de suma importância na classificação das madeiras em categorias de qualidade. São critérios de classificação os seguintes defeitos de madeira, **exceto**:
 - a) de pintura.
 - b) de alteração.
 - c) de produção.
 - d) de crescimento.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA A)

A alternativa <u>A</u> é falsa, conforme pode ser observado na página 491 do livro "Materiais de Construção Falcão Bauer, vol. 2. As opções B, C e D estão corretas e o quarto defeito é de secagem.

Fonte: BAUER, L. A. Falcão. Materiais de Construção. 5. ed. Rio de Janeiro: LTC, 2004 e 1994, v. 1 e 2.

- **36)** São considerados edifícios de pequeno porte aqueles com estruturas regulares muito simples. De acordo com a definição do Libânio Pinheiro, a única alternativa correta é
 - a) Até três pavimentos.
 - b) Cargas de uso nunca superiores a 2,0kN/m².
 - c) Altura de pilares até 4,0m e vãos não excedendo 6,0m.
 - d) Vão máximo de lajes até 3,0m (menor vão) ou 1,5m, no caso de balanços.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA C)

A alternativa C é a única correta (p. 8 e 9)

- a) Até quatro pavimentos.
- b) Cargas de uso nunca superiores a 3,0 kN/m².
- d) Vão máximo de lajes até 4,0m (menor vão) ou 2,0m, no caso de balanços.

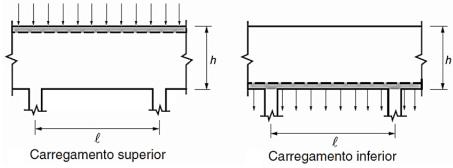
<u>Fonte</u>: PINHEIRO, Libânio M. **Apostila Fundamentos do Concreto e Projeto de Edifícios.** São Paulo: USP - São Carlos, 2007.

37) Deseja-se executar o projeto de um filtro de areia com grãos maiores que 2,36mm. Foi feito um ensaio para identificação da distribuição granulométrica do material disponível, sendo o resultado apresentado na tabela a seguir:

Peneira	a Massa retida (g)	
4,75 mm	20	
2,36 mm	130	
1,18 mm	245	
600 µm	112	
300 µm	188	
150 µm	105	
Total	800	

Quantos quilos do solo disponível serão necessários executar um filtro com 5,0kg de areia com todos os grãos maiores que 2,36mm?

- a) 14,6kg
- b) 15,0kg
- c) 18,8kg
- d) 26,7kg


JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA D)

Massa =
$$20 + 130 = 150 g$$

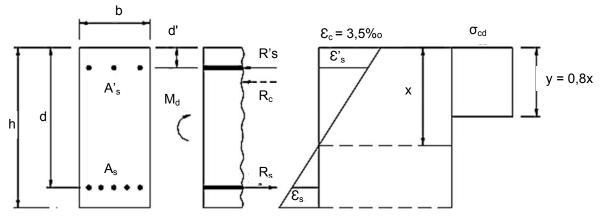
150 x

Fonte: PINTO, Carlos de Souza. Curso Básico de Mecânica dos Solos. 3. ed. São Paulo: Oficina de Textos, 2006.

38) Segundo a definição da NBR 6118, vigas-parede são vigas altas em que a relação vão e altura (*l/h*) é inferior a dois em vigas biapoiadas e inferior a três em vigas contínuas, podendo receber carregamentos superior ou inferior, conforme figura abaixo.

Dois tipos comuns de vigas-parede em relação ao carregamento

O comportamento estrutural das vigas-parede possui características específicas, destacando-se entre elas, exceto:


- a) Maior eficiência que as vigas usuais à flexão.
- b) Enrijecedores de apoio ou travamentos são muitas vezes necessários.
- c) Ineficiência ao cisalhamento quando comparadas com as vigas usuais.
- d) Problemas de estabilidade do corpo rígido e às vezes de estabilidade elástica.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA A)

A alternativa A (NBR 6118) é falsa, pois também apresenta ineficiência à flexão quando comparadas com vigas usuais.

<u>Fonte</u>: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6118: projeto de estruturas de concreto: procedimento.** Rio de Janeiro, 2007.

39) Para o dimensionamento de peças na flexão simples, considera-se que as barras que constituem a armadura estão agrupadas, e se encontram concentradas no centro de gravidade dessas barras, conforme indicado na figura abaixo.

Resistências e deformações na secção

Para uma viga de seção retangular da figura, considerando b = 30cm e h = 45cm, para um concreto classe C25, o Aço CA - 50, $M_k = 170kN.m$ e h-d = 3cm. A área de aço A_s é de

- a) 1,90cm²
- b) 12,25cm²
- c) 14,30cm²
- d) 15,87cm²

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA D)

$$d = 45 - 3 = 42 \text{ cm}$$

$$k_c = \frac{bd^2}{M_d} = \frac{30.42^2}{1,4.17000} = 2,2 \rightarrow k_s = 0,028 - Tabela$$

$$k_s = \frac{A_s d}{M_d}$$

$$A_S = 0.028.1, 4.17000 / 42$$

$$A_S = 15,87 \text{ cm}^2$$

<u>Fonte</u>: PINHEIRO, Libânio M. **Apostila Fundamentos do Concreto e Projeto de Edifícios.** São Paulo: USP - São Carlos, 2007.

40) Quanto ao processo de desforma para estruturas de concreto, no caso de não ter sido empregado cimento de alta resistência inicial ou aditivos que aceleram o endurecimento, a retirada de fôrmas e do escoramento não deverá ocorrer antes de determinados prazos. Correlacione as colunas abaixo.

Faces Laterais

() 28 dias

II. Face inferiores, deixando-se algumas escoras bem cunhadas.

() 3 dias

III. Retirada de algumas escoras.

() 14 dias

IV. Vigas e arcos com vãos maiores de 10,0m.

() 7 dias

A sequência está correta em

- a) I, II, III e IV.
- b) IV, III, II e I.
- c) IV, I, II e III.
- d) IV, II, III e I.

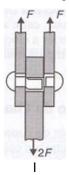
JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA C)

- Item 3.3.5: 28 dias para vigas e arcos com vãos maiores de 10,0m.
- 3 dias para faces laterais.
- 14 dias para faces inferiores, deixando-se algumas escoras bem cunhadas.
- 7 dias para retirada de algumas escoras.

Fonte: RIPPER, Ernesto. Manual Prático de Materiais de Construção. São Paulo: Editora Pini.

- **41)** Considerando a viga do problema anterior, sabendo que o comprimento nominal para viga sujeita a classe de agressividade II é de 30mm, assinale a alternativa que **não** apresenta uma possível distribuição de ferros para a armadura positiva A_s calculada.
 - a) 4 \phi 25 . 0
 - b) 8 \phi 16.0
 - c) 6 \(\phi \) 20 . 0
 - d) 10 \(\phi \) 12 . 5

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA D)


A área que cada bitola de aço ocupada é dado pela expressão $\left(\frac{\pi d^2}{4}\right)$

diâmetro (cm) Área (cm2)			Número de Barras
0,63	0,3117245	50,9103	51
0,80	0,5026548	31,5724	32
1,00	0,7853982	20,2063	21
1,25	1,2271846	12,932	13
1,60	2,0106193	7,89309	8
2,00	3,1415927	5,05158	6
2,50	4,9087385	3,23301	4

Fontes:

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: projeto de estruturas de concreto: procedimento. Rio de Janeiro, 2007.
- PINHEIRO, Libânio M. **Apostila Fundamentos do Concreto e Projeto de Edifícios.** São Paulo: USP São Carlos, 2007.

42) O dimensionamento dos conectores no estado limite é feito com base nas modalidades de rupturas da ligação, conforme as figuras abaixo.

Relacione cada figura acima com a definição da modalidade de ruptura de uma ligação com conectores.

- () ruptura por rasgamento da chapa entre o furo e a borda ou entre dois furos consecutivos.
- () ruptura por corte do fuste do conector.
- () ruptura por tração da chapa na seção transversal líquida.
- () ruptura por esmagamento da chapa na superfície de apoio do fuste do conector.

A sequência está correta em

- a) IV, I, III e II.
- b) I, II, III e IV.
- c) III, II, IV e I.
- d) III, I, IV e II.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA A)

A alternativa A está de acordo com o item 3.9.2 do Livro Estruturas de Aço de PFEIL.

Fonte: PFEIL, Walter; PFEIL, Michele. Estruturas de Aço: dimensionamento prático. Rio de Janeiro: LTC.

- **43)** Filler é o material de construção mais fino, que passa pela peneira #200 (0,075mm). O filler é utilizado nos seguintes serviços, **exceto**:
 - a) Como espessante de asfaltos fluidos.
 - b) Na fabricação de tijolo de solo-cimento.
 - c) Na preparação de concretos, para preencher vazios.
 - d) Na fabricação de mástiques e argamassa betuminosa.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA B)

Segundo RIPPER (p. 12 – Item 2.2.6), "o solo precisa ser arenoso para fabricação de tijolo de solo-cimento".

Fonte: RIPPER, Ernesto. Manual Prático de Materiais de Construção. São Paulo: Editora Pini.

44) A NBR 5626 traz parâmetros e procedimentos para o dimensionamento e execução de projetos de instalações hidráulicas de água fria. Baseado na NBR 5626, complete a tabela abaixo.

Mictório com Sifão Integrado	C	0.50
R	Válvula de Descarga	1.70
Chuveiro	Chuveiro Registro de Pressão	
Banheira	Misturador (Água Fria)	0,30
Aparelho Sanitário	Peça de Utilização	Vazão de Projeto L/s

A alternativa que apresenta, respectivamente, A, B e C de forma correta é

- a) 0,30 / Pia / Registro de pressão.
- b) 0,10 / Pia / Válvula de descarga.
- c) 0,10 / Bacia sanitária / Registro de pressão.
- d) 0,20 / Bacia sanitária / Válvula de descarga.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA D)

De acordo com a NBR 5626:

A = 0.20 L/s

B = Bacia Sanitária

C = Válvula de Descarga

<u>Fonte</u>: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5626: instalação predial de água fria.** Rio de Janeiro, 1998.

- **45)** Determine o tempo de ciclo de um caminhão que é carregado por uma escavadeira que opera em uma pedreira, com base nos dados abaixo:
 - Distância de transporte: 600 metros;
 - Tempo de carga: 5 minutos;
 - Transporte: velocidade carregado 25km/h;
 - Transporte: velocidade vazio 40km/h;
 - Manobra para descarga: adotar 3min;
 - · Descarga: adotar 2min; e,
 - Posicionamento para carga: adotar 2min.

Marque a opção correta do tempo de ciclo do caminhão.

- a) 11,34min
- b) 13,33min
- c) 14,34min
- d) 15,23min

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA A)

Carga – 2 minutos Ida – 1,44 minuto Manobra – 3 minutos Descarga – 2 minutos Volta – 0,9 minuto Posicionamento – 2 minutos Tempo total – 11,34 minutos

Fonte: LIMMER, Carl V. Planejamento, Orçamentação e Controle de Projetos e Obras. Rio de

- **46)** A NBR 5410, norma regulamentadora de Instalações Elétricas de Baixa Tensão, afirma que alguns itens devem ser considerados para evitar os efeitos danosos ou indesejados, **exceto**:
 - a) as harmônicas.
 - b) fator de corrente.
 - c) o desequilíbrio de fases.
 - d) as correntes iniciais ou de energização.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA C)

De acordo com a NBR 5410, são considerações que devem ser levadas em consideração para evitar efeitos danosos: o fator de potência, as correntes inicias ou de energização, fator de potência, as harmônicas. Logo a alternativa $\underline{\mathbf{C}}$ apresenta algo que \underline{n} está associado corretamente.

<u>Fonte</u>: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5410: instalações elétricas de baixa tensão.** Rio de Janeiro, 2008.

Com base na estrutura a seguir (viga biapoiada com balanço), responda às questões $\frac{47}{4}$ e $\frac{48}{4}$. Considere um valor constante de EI = $125 \times 10^3 \text{kN.m}^2$.

- 47) Determine a inclinação da tangente à curva elástica da viga no apoio A.
 - a) -0.002rad
 - b) +0,002rad
 - c) -0,01058rad
 - d) +0,01058rad

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA C)

A Inclinação da tangente à curva elástica da viga em A (x = 0 m) é:

$$EI\left(\frac{dv}{dx}\right)_{A} = -1322,0833 \text{ kN.m}^2$$

$$\left(\frac{dv}{dx}\right)_A = -\frac{1322,0833}{125000} = -0,01058 \text{ rad}$$

Fontes:

- SUSSEKIND, José C. Curso de Análise Estrutural. Rio de Janeiro: Editora Globo. v. 1 e 2.
- TIMOSHENKO, Stephen. Mecânica dos Sólidos. Rio de Janeiro: Editora Livros Técnicos e Científicos. v. 1 e 2.
- 48) Com base na figura da viga, determine a inclinação da tangente à curva elástica da viga no ponto B.
 - a) -28,3mm
 - b) -30,4mm
 - c) +17,2mm
 - d) +31,2mm

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA B)

A deflexão na via em B (x = 4m) é:

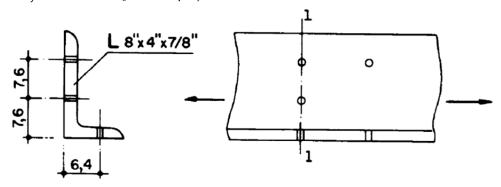
$$EIv_B = \frac{200 \text{ kN}}{6} (4\text{m})^3 - \frac{60\text{kN/m}}{24} (4\text{m})^4$$

$$v_B = -30,4\text{mm}$$

Fontes:

- SUSSEKIND, José C. Curso de Análise Estrutural. Rio de Janeiro: Editora Globo. v. 1 e 2.
- TIMOSHENKO, Stephen. Mecânica dos Sólidos. Rio de Janeiro: Editora Livros Técnicos e Científicos. v. 1 e 2.
- **49)** Em fundações superficiais, segundo NBR 6122, para se determinar a pressão admissível devem ser considerados alguns fatores tais como:
 - profundidade da fundação.
 - II. recalques admissíveis.
 - III. características da obra.
 - IV. dimensões e forma dos elementos de fundação.

Estão corretas as afirmativas


- a) I, II, III e IV.
- b) I e IV, apenas.
- c) I, II e IV, apenas.
- d) I, III e IV, apenas.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA A)

Conforme a NBR 6122, todas as afirmativas estão corretas pois tratam das características a serem levadas em consideração para a determinação da pressão admissível. Portanto a alternativa correta é a <u>A</u>.

<u>Fonte</u>: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6122: projeto e execução de fundações**. Rio de Janeiro, 1996.

50) Determine a força admissível de tração axial da cantoneira da figura abaixo. Os furos são puncionados e o diâmetro do conector é 3/4". Utilize as tensões admissíveis e $0,5f_u$. O material utilizado na cantoneira é ASTM A36. (Considere f_y = 250 MPa e f_u = 400 Mpa.)

- a) 90.145kgf
- b) 94.155kgf
- c) 95.431kgf
- d) 95.987kgf

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA B)

$$3/4$$
" + $1/8$ " = $7/8$ " = $22,2$ mm
 $A_n = 62,77 - (3)(2,22)(2,22) = 48,0$ cm²
 $N = (A_g)(0,6)f_y = 94.155$ kgf
 $N = (A_n)(0,5)f_y = 96.000$ kgf

O esforço admissível é determinado pelo escoamento da seção bruta: 94155 kgf.

Fonte: PFEIL, Walter; PFEIL, Michele. Estruturas de Aço: dimensionamento prático. Rio de Janeiro: LTC.

- 51) A motoniveladora é um dos equipamentos mais utilizados em obras da construção civil de grande porte e principalmente em obras de nivelamento de estradas ou patamares. Ele é um veículo geralmente com seis rodas e uma lâmina horizontal ajustável responsável pelo nivelamento de terrenos. Logo é extremamente importante o conhecimento desse equipamento a fim de elaborar um bom projeto orçamentário. Para um bom dimensionamento dos custos de operação desse tipo de equipamento, as informações necessárias são:
 - Preço: R\$ 350.000,00;
 - Custo unitário dos pneus: R\$ 1.300,00;
 - Vida útil do equipamento e pneus respectivamente: 5 anos (2.000 h/ano) e 3.500 h;
 - Valor residual: 10%;
 - Taxa de juros: 12% a.a;
 - Motor: 140 HP;
 - Fator de potência: 0,60;
 - Capacidade do cárter: 54 Litros;
 - Período entre trocas de óleo: 80 h;
 - Preço do diesel: R\$ 1,80;
 - Preço do óleo lubrificante: R\$ 10,00;
 - Manutenção: k = 0,80; e,
 - Operador: R\$ 6,90/h.

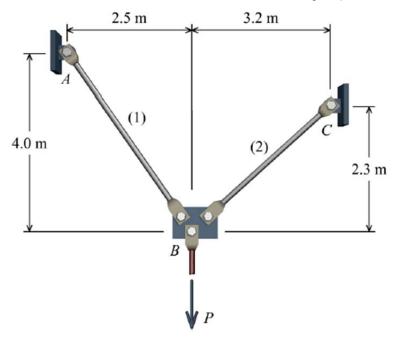
Com base nos conhecimentos orçamentários afirma-se que

- a) o custo da hora improdutiva é de R\$ 51,20/h.
- b) o custo da hora produtiva desse equipamento é de R\$ 127,78/h.
- c) o custo com a manutenção desse equipamento é o mais elevado.
- d) a depreciação representa em torno de 35% do custo desse equipamento.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA A)

$$C_{h \; improdutiva} = 31,05 + 13,25 + 6,90 = R\$51,20/h$$

Fonte: LIMMER, Carl V. Planejamento, Orçamentação e Controle de Projetos e Obras. Rio de Janeiro: LTC, 1997.


- **52)** A NBR 10844 define que os projetos de instalações de águas pluviais devem atender a determinadas exigências. Nesse sentido, informe se as afirmativas abaixo são verdadeiras (V) ou falsas (F) e, em seguida, assinale a alternativa que apresenta a sequência correta.
 - () Recolher e conduzir a vazão de projetos até locais permitidos pelos dispositivos legais.
 - () Absorver os esforços provocados pelas variações térmicas a que estão submetidas.
 - () As estruturas devem ser projetadas para evitar choques mecânicos e baixa exposição a intempéries.
 - () Ser fixadas de maneira a assegurar a resistência e durabilidade.
 - a) V F V V
 - b) F V V F
 - c) V V F V
 - d) V F F F

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA C)

As estruturas de águas pluviais devem ser projetadas para resistir choques mecânicos e intempéries. Logo a alternativa correta é a Letra <u>C</u>.

<u>Fonte</u>: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 10844: instalação Predial de Águas Pluviais.** Rio de Janeiro, 1989.

53) Duas hastes cilíndricas maciças suportam uma carga P = 50kN conforme a figura abaixo. Se a tensão normal em cada haste deve ser limitada a 130MPa, determine o diâmetro mínimo exigido para cada haste.

Marque a opção correta que traz os diâmetros dos tubos 1 e 2, respectivamente, em mm:

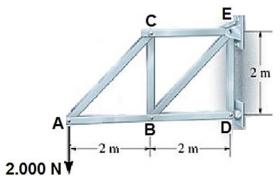
- a) 17,98 / 15,6
- b) 18,39 / 16,7
- c) 19,96 / 16,13
- d) 20,32 / 18,12

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA C)

$$A_1 \ge \frac{F_1}{\sigma} = 312,9664 mm^2 \rightarrow d_1 = 19,96 mm$$

$$A_2 \ge \frac{F_2}{g} = 204,2718 \text{mm}^2 \rightarrow d_1 = 16,13 \text{mm}$$

Fonte: BEER, F. P. Resistência dos Materiais. 4. ed. São Paulo: McGraw Hill, 2006.

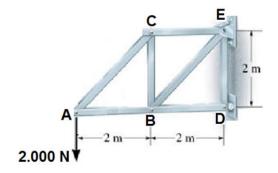

- **54)** Para o dimensionamento do sistema de ventilação secundária, a NBR 8160 tece algumas recomendações. Marque a opção correta.
 - a) O tubo de ventilador de circuito deve ter o diâmetro nominal igual a 50mm.
 - b) O tudo de ventilação de alívio deve ter diâmetro nominal igual ao diâmetro nominal da coluna de ventilação a que estiver ligado.
 - c) O tubo de ventilador complementar deve ter o diâmetro nominal inferior à metade do diâmetro do ramal de esgoto que estiver ligado.
 - d) O tudo de ventilação de alívio deve ter diâmetro igual no mínimo à metade do diâmetro nominal da coluna de ventilação a que estiver ligado.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA B)

O tubo de ventilação de alívio deve ter diâmetro nominal igual ao diâmetro da coluna de ventilação a que estiver ligado.

<u>Fonte</u>: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8160: sistemas prediais de esgoto sanitário: projeto e execução.** Rio de Janeiro, 1999.

55) Seja a treliça submetida aos carregamentos indicados na figura abaixo.


Sendo EA = 10⁷N.m e Sen 45° = 0,707, o deslocamento vertical em A será de

- a) 2,2mm para baixo.
- b) 3,0mm para cima.
- c) 4,0mm para baixo.
- d) 5,0cm para baixo.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA A)

Resolvendo pelo Método da Carga Unitária

1) Estado de deformação:

1.1 - Fazer a análise externa:

$$\sum F_v = 0 \therefore E_v = 2.000N$$

$$\sum$$
 M_A = 0 \therefore 4 \cdot 2000 – 2 \cdot E_x = 0 \cdot : E_x = 4.000 N

$$\sum F_x = 0 \therefore E_x = -D_x \therefore D_x = -4.000N$$

1.2 - Aplicar o método dos Nós:

Nó A

$$\sum F_x = 0 \rightarrow -2000 + F_{AC_v} = 0$$

$$F_{AC}$$
 · Sen45° = 2000 \rightarrow F_{AC} = 2.828,85 N (Tração)

$$\sum F_{x} = 0 \rightarrow -F_{AB} + F_{AC_{X}} = 0$$

$$F_{AB}$$
 + 0,707 F_{AC} = 0 \rightarrow F_{AB} = -2.000,00 N (Compressão)

Nó C

$$\sum F_{x} = 0 \rightarrow F_{CE} + F_{AC_{X}} = 0$$

$$F_{CE} - 2828,85 \cdot 0,707 = 0 \rightarrow F_{CE} = 2.000,00 \text{ N (Tração)}$$

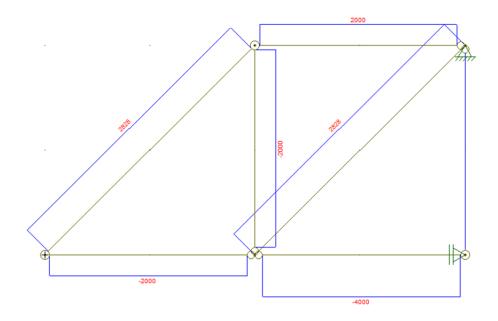
$$\sum F_y = 0 \rightarrow F_{BC} + F_{AC_y} = 0$$

$$-F_{BC}$$
+2000 · 0,707 = 0 $\rightarrow F_{BC}$ = - 2.828,85 N (Compressão)

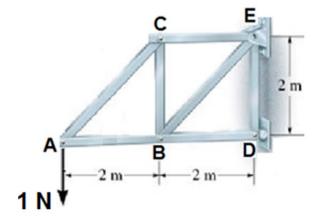
Gabarito Comentado - EAOEAR 2016 - Engenharia Civil - Versão A

Nó D

$$\sum F_x = 0 \rightarrow F_{BD} + D_X = 0$$


$$-F_{BD} - 4000 = 0 \rightarrow F_{BD} = -4.000,00 \text{ N} \text{ (Compressão)}$$

$$\sum F_y = 0 \rightarrow F_{DE} = 0$$


Nó E

$$\Sigma F_x = 0 \rightarrow -F_{BE_x} - F_{CE} + E_x = 0$$

$$-F_{BE} \cdot 0,707 - 2000 + 4000 = 0 \rightarrow F_{BD} = 2.828,85 \text{ N (Tração)}$$

2) Estado de Carregamento

2.1 - Fazer a análise externa:

$$\sum F_v = 0 \therefore E_v = 1N$$

$$\sum M_A = 0 : 4.1 - 2.E_x = 0 : E_x = 2N$$

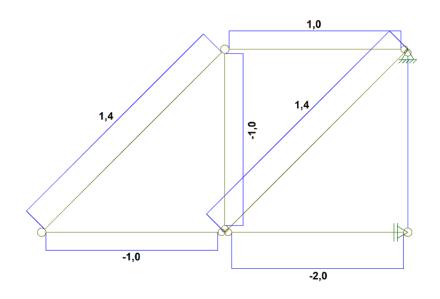
$$\sum F_x = 0 \therefore E_X = -D_x \therefore D_x = -2N$$

2.2 - Aplicar o método dos Nós:

Nó A

$$\begin{split} \sum F_{y} &= 0 \rightarrow -1 + F_{AC_{y}} = 0 \\ F_{AC} &\cdot 0,707 = 1 \quad \rightarrow \quad F_{AC} = 1,41 \text{ N (Tração)} \\ \sum F_{x} &= 0 \rightarrow F_{AB} + F_{AC_{x}} = 0 \end{split}$$

$$F_{AB}$$
 + 0,707 F_{AC} = 0 \rightarrow F_{AB} = -1,00 N (Compressão)


Nó C

$$\begin{split} \sum F_{x} &= 0 \to F_{CE} + F_{AC_{X}} = 0 \\ &F_{CE} - 1,41 \cdot 0,707 = 0 \to \quad \textbf{F}_{CE} = \textbf{1,00 N (Tração)} \\ \sum F_{y} &= 0 \to -F_{BC} + F_{AC_{y}} = 0 \\ &- F_{BC} + 1 \cdot 0,707 = 0 \to \quad \textbf{F}_{BC} = -\textbf{1,41 N (Compressão)} \end{split}$$

Nó D

$$\begin{split} \sum F_{x} = 0 &\to -F_{BD} + D_{\chi} = 0 \\ &- F_{BD} - 2 = 0 \ \to \ F_{BD} = -2,00 \ N \ \text{(Compressão)} \\ \sum F_{y} = 0 &\to F_{DE} = 0 \end{split}$$

Nó E

Fazendo o produto de N com $\overline{\rm N}$:

BARRA	N	\overline{N}	Produto
AB	-2000,00	-1,00	2000,00
AC	2828,85	1,40	3960,39
ВС	-2000,00	-1,00	2000,00
BD	-4000,00	-2,00	8000,00
BE	2828,85	1,40	3960,39
CE	2000,00	1,00	2000,00
DE	0,00	0,00	0,00
			21920,78

$$\delta_{A_V} = \frac{\sum N.\overline{N}}{EA} = \frac{21920,78}{10^7} = 2,20.10^{-3} \text{m} = 2,20 \text{mm}$$

Fonte: SUSSEKIND, José C. Curso de Análise Estrutural. Rio de Janeiro: Editora Globo. v. 1 e 2.

- **56)** A NBR 5626 apresenta fatores que determinam a velocidade da corrosão em tubulações hidráulicas prediais. São fatores que determinam a velocidade do processo de corrosão, **exceto**:
 - a) impurezas.
 - b) temperatura.
 - c) concentração de sais.
 - d) velocidade de escoamento.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA A)

São fatores que determinam a velocidade da corrosão, abordados pela NBR 5626, temperatura, pH da água, gases dissolvidos; concentração de sais e velocidade do escoamento.

<u>Fonte</u>: ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5626: instalação predial de água fria.** Rio de Janeiro, 1998.

- **57)** Um eixo circular macico, de 50mm de diâmetro e 1,20m de comprimento é submetido à ação de um momento torsor de 4,6kN.m em cada extremidade. Considerando que o eixo é feito de um material elastoplástico com tensão de escoamento ao cisalhamento de 150MPa e módulo de elasticidade tranversal de 80 GPa, qual é o ângulo de torção do eixo?
 - a) 7,89°
 - b) 8,12°
 - c) 8,18°
 - d) 9,59°

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA C)

$$\phi_e = \frac{\text{TeL}}{\text{JG}} = 89,9 \text{x} 10^{-3} \text{rad}$$
 $\theta = \frac{\phi_e}{\rho_e/c} = 142,7 \text{x} 10^{-3} \text{rad}$
 $\theta = 8.18^\circ$

Fonte: BEER, F. P. Resistência dos Materiais. 4. ed. São Paulo: McGraw Hill, 2006.

- **58)** Em um ensaio de tração, no corpo de prova normalizado, ao atingir a tensão máxima, inicia-se um fenômeno chamado de estricção que é a redução da área da secção transversal do corpo de prova que está ligado a qual propriedade mecânica?
 - a) Resiliência.
 - b) Ductilidade.
 - c) Tenacidade.
 - d) Fragilidade.

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA B)

Ductilidade é a propriedade mecânica que está ligada com o fenômeno de estricção.

Fonte: BEER, F. P. Resistência dos Materiais. 4. ed. São Paulo: McGraw Hill, 2006.

- **59)** A área de empréstimo disponível para a construção de um aterro teve volume estimado em 5000m³, com solo de peso específico natural (γ) de 18,0kN/m³ e umidade de 12,0%. Se no projeto prevê que o solo do aterro seja compactado com uma umidade de 20% e tenha peso específico seco de 16,0kN/m³, que volume de aterro é possível construir com o material disponível?
 - a) 2.178cm³
 - b) 5.022cm³
 - c) 6.320cm³
 - d) 7.200cm³

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA B)

- Peso Total:
$$Y = \frac{P}{V} \rightarrow P = Y . V = 18.5000 = 90,000 kN$$

- Peso de água: P_W = 0,12 ⋅ P_S

- Peso de solo: $0.12 \cdot P_S + P_S = 90000 \rightarrow 1.12 P_S = 90000 \rightarrow P_S \cong 80.357 \text{ kN}$

- Volume de aterro:
$$Y = \frac{P}{V} \rightarrow V = \frac{P}{Y} = \frac{80357}{16} = 5.022, 3cm^3$$

Fonte: PINTO, Carlos de Souza. Curso Básico de Mecânica dos Solos. 3. ed. São Paulo: Oficina de Textos, 2006.

- **60)** No limite de proporcionalidade, um comprimento útil de 5,08cm de uma haste de liga metálica de 0,9525cm de diâmetro alongou-se 0,0211cm e o diâmetro foi reduzido de 0,00127cm. A força total de tração na haste foi de 4,75kip. É correto afirmar que o módulo de elasticidade, o coeficiente de *Poisson* e o limite de proporcionalidade são, respectivamente:
 - a) 8,360ksi / 0,221 / 40ksi
 - b) 9,360ksi / 0,221 / 43ksi
 - c) 10,360ksi / 0,321 / 43ksi
 - d) 11,360ksi / 0,321 / 48ksi

JUSTIFICATIVA DA ALTERNATIVA CORRETA: (LETRA C)

$$E = \frac{\delta}{\varepsilon} = 10,363ksi$$

$$v = \frac{\varepsilon_{lat}}{\varepsilon_{long}} = 0,321$$

$$\sigma_{PL}$$
 = 43 ksi

Fonte: BEER, F. P. Resistência dos Materiais. 4. ed. São Paulo: McGraw Hill, 2006.